Singh RS, Gupta BP (2020). Genes and genomes and unnecessary complexity in precision medicine. npj Genomic Medicine, 5:20 (doi: 10.1038/s41525-020-0128-1).

Mallick A, Gupta BP (2020). Vitellogenin-2 acts downstream of PRY-1/Axin to regulate lipids and lifespan in C. elegans. Micropublication Biology (doi: 10.17912/micropub.biology.000281).

Ghaemi R, Tong J, Gupta BP, Selvaganapathy PR (2020). Microfluidic Device for Microinjection of Caenorhabditis elegans. Micromachines (Basel), 11:295 (doi:10.3390/mi11030295).

Culp E, Richman C, Sharanya D, Jhaveri N, van den Berg W, Gupta BP (2020). Genome editing in the nematode Caenorhabditis briggsae using the CRISPR/Cas9 system. Biology Methods and Protocols, 1-5 (doi: 10.1093/biomethods/bpaa003).

Chamberlin HM, Jain IM, Corchado-Sonera M, Kelley LH, Sharanya D, Jama A, Pabla R, Dawes AT, Gupta BP (2020). Evolution of Transcriptional Repressors Impacts Caenorhabditis Vulval Development. Mol Biol Evol, 37:1350-1361 (doi: 10.1093/molbev/msaa009).

Chalich Y, Mallick A, Gupta BP, Deen MJ (2020). Development of a low-cost, user-customizable, high-speed camera. PLoS One, 15: e0232788 (doi: 10.1371/journal.pone.0232788).

Mallick A, Taylor SKB, Ranawade A, Gupta BP (2019). Axin Family of Scaffolding Proteins in Development: Lessons from C. elegans. Journal of Developmental Biology, 7:20 (doi: 10.3390/jdb7040020).

Mallick A, Ranawade A, Gupta BP (2019). Role of PRY-1/Axin in heterochronic miRNA-mediated seam cell development. BMC Developmental Biology, 19:17 (doi: 10.1186/s12861-019-0197-5).

Khadka B, Chatterjee T, Gupta BP, Gupta RS (2019). Genomic Analyses Identify Novel Molecular Signatures Specific for the Caenorhabditis and other Nematode Taxa Providing Novel Means for Genetic and Biochemical Studies. Genes, 10:739 (doi: 10.3390/genes10100739).

Ranawade A, Mallick A, Gupta BP (2018). PRY-1/Axin signaling regulates lipid metabolism in Caenorhabditis elegans. PLoS ONE, 13(11):e0206540 (doi: 10.1371/journal.pone.0206540).

Richman C, Rashid S, Parashar S, Mishra RK, Selvaganapathy PR, Gupta B (2018). C. elegans MANF Homolog Is Necessary for the Protection of Dopaminergic Neurons and ER Unfolded Protein Response. Frontiers in Neuroscience, 12:544 (doi: 10.3389/fnins.2018.00544).

Amon S, Gupta BP (2017). Multi-species alignments of Caenorhabditis elegans lin-11 intronic sequences and putative transcriptional regulators. Data Brief, 12:87-90 (doi: 10.1016/j.dib.2017.03.027).

Amon S, Gupta BP (2017). Intron-specific patterns of divergence of lin-11 regulatory function in the Caenorhabditis elegans nervous system. Developmental Biology, 424(1):90-103 (doi: 10.1016/j.ydbio.2017.02.005).

Liu D, Gupta BP and Selvaganapathy PR (2016). An automated microfluidic system for screening Caenorhabditis elegans behaviors using electrotaxis. Biomicrofluidics, 10(1):014117 (doi: 10.1063/1.4941709).


Sharanya D, Fillis CJ, Kim J, Zitnik EM Jr, Ward KA, Gallagher ME, Chamberlin HM, Gupta BP (2015). Mutations in Caenorhabditis briggsae identify new genes important for limiting the response to EGF signaling during vulval development. Evolution & Development, 17(1):34-48 (doi: 10.1111/ede.12105).

Culp E, Richman C, Sharanya D, Gupta B (2015). Genome Editing in Caenorhabditis briggsae using the CRISPR/Cas9 System. BioRxiv, (doi: https://doi.org/10.1101/021121).

Piazza J, Hoare T, Molinaro L, Terpstra K, Bhandari J, Selvaganapathy PR, Gupta B, Mishra RK (2014). Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. European Journal of Pharmaceutics and Biopharmaceutics, 87(1):30-9 (doi: 10.1016/j.ejpb.2014.02.007).

Ranawade AV, Cumbo P, and Gupta BP (2013). Caenorhabditis elegans Histone Deacetylase hda-1 is Required for Morphogenesis of the Vulva and LIN-12/Notch-Mediated Specification of Uterine Cell Fates. G3: Genes, Genomes, Genetics, 3(8):1363-1274 (doi: 10.1534/g3.113.006999).

Salam S, Ansari A, Amon S, Rezai P, Selvaganapathy PR, Mishra RK and Gupta BP (2013). A microfluidic phenotype analysis system reveals function of sensory and dopaminergic neuron signaling in C. elegans electrotactic swimming behavior. Worm, 2(3): e24558 (dx.doi.org/10.4161/worm.24558).

Tong J, Rezai P, Salam S, Selvaganapathy PR and Gupta BP (2013). Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans' locomotion. J Vis Exp, 75: e50226 (doi: 10.3791/50226).

Sharanya D, Thillainathan B, Marri S, Bojanala N, Taylor J, Flibotte S, Moerman DG, Waterston RH and Gupta, BP (2012). Genetic Control of Vulval Development in Caenorhabditis briggsae. G3: Genes, Genomes, Genetics, 2(12): 1625-1641 (doi: 10.1534/g3.112.004598).

Gupta BP, Hanna-Rose W and Sternberg PW (2012). Morphogenesis of the vulva and the vulval-uterine connection. Wormbook (doi/10.1895/wormbook.1.150.1).

Rezai P, Salam S, Selvaganapathy PR, and Gupta BP (2012). Electrical sorting of Caenorhabditis elegans. Lab Chip, 12, 1831 (doi: 10.1039/c2lc20967e).

Rezai P, Salam S, Selvaganapathy PR and Gupta BP (2012). Chapter 27: Microfluidic systems to study the biology of human diseases and identify potential therapeutic targets in C. elegans. Invited review in book Integrated Microsystems: Electronics, Photonics, and Biotechnology (Editor: K. Iniewski). CRC Press, Taylor & Francis Group, 2012. Pages 581-608.

Ross JA, Koboldt DC, Staisch JE, Chamberlin HM, Gupta BP, Miller RD, Baird SE and Haag ES (2011). Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination. PLoS Genetics, 7: e1002174 (doi: 10.1371/journal.pgen.1002174).

Rezai P, Salam S, Selvaganapathy PR and Gupta BP (2011). Effect of pulse direct current signals on electrotactic movement of nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Biomicrofluidics, 5(4):44116-441169 (doi: 10.1063/1.3665224).


Seetharaman A#, Cumbo P#, Bojanala N and Gupta BP (2010). Conserved mechanism of Wnt signaling function in vulval cell fate specification in C. elegans and C. briggsae. Dev Biol 346:128-139 (doi: 10.1016/j.ydbio.2010.07.003)(#co-first authors).

Koboldt DC, Staisch J, Thillainathan B, Haines K, Baird SE, Chamberlin HM, Haag ES, Miller RD and Gupta BP (2010). <color grey>A toolkit for rapid gene mapping in the nematode Caenorhabditis briggsae. BMC Genomics 11:236 (doi: 10.1186/1471-2164-11-236).

Rezai P, Siddiqui A, Selvaganapathy PR and Gupta BP (2010). <color grey>Behavior of Caenorhabditis elegans in alternating electric field and its application to their localization and control.
Appl. Phys. Lett. 96, 153702 (doi:10.1063/1.3383223).

Rezai P, Siddiqui A, Selvaganapathy PR and Gupta BP (2010). Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab Chip 10:220-226 (doi: 10.1039/b917486a).

Zhao Z, Flibotte S, Murray JI, Blick D, Boyle TJ, Gupta BP, Moerman DG and Waterston RH (2010). New tools for investigating the comparative biology of Caenorhabditis briggsae and C. elegans. Genetics. 184:853-63 (doi: 10.1534/genetics.109.110270).

Marri S and Gupta BP (2009). Dissection of lin-11 enhancer regions in Caenorhabditis elegans and other nematodes. Dev Biol 325:402-411 (doi: 10.1016/j.ydbio.2008.09.026).

Haerty W, Artieri C, Singh RS and Gupta BP (2008). Comparative analysis of function and interaction of transcription factors in nematodes: Extensive conservation of orthology coupled to rapid sequence evolution. BMC Genomics 9:399 (doi: 10.1186/1471-2164-9-399).

Artieri CG, Haerty W, Gupta BP and Singh RS (2008). Sexual selection and maintenance of sex: evidence from comparisons of rates of genomic accumulation of mutations and divergence of sex-related genes in sexual and hermaphroditic species of Caenorhabditis. Mol Biol Evol 25:972-979 (doi: 10.1093/molbev/msn046).

Gupta BP, Johnsen R and Chen N (2007). Genomics and biology of the nematode Caenorhabditis briggsae. Wormbook (doi/10.1895/wormbook.1.136.1).

Gupta BP, Liu J, Hwang B, Moghal N and Sternberg PW. (2006). sli-3 negatively regulates the LET-23/EGFR-mediated vulval induction pathway in Caenorhabditis elegans. Genetics 174:1315-1326 (doi: 10.1534/genetics.106.063990).


Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B and Ronai Z (2004). The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in C. elegans. Genes Dev 18:2380-2391 (doi: 10.1101/gad.1227104).

Gupta BP and Sternberg PW (2003). The draft genome sequence of the nematode Caenorhabditis briggsae, a companion to C. elegans. Genome Biol 4:238.1-238.4 (doi:10.1186/gb-2003-4-12-238).

Gupta BP, Wang M and Sternberg PW (2003). The C. elegans LIM homeobox gene lin-11 specifies multiple cell fates during vulval development. Development 130:2589-2601 (doi: 10.1242/dev.00500).

Inoue T, Sherwood DR, Aspöck G, Butler JA, Gupta BP, Kirouac M, Wang M, Lee P-Y, Kramer JM, Hope I, Bürglin T and Sternberg PW (2002). Gene expression markers for C. elegans vulval cells. Mech Dev 119S:S203-S209 (dx.doi.org/10.1016/S0925-4773(03)00117-5).

Gupta BP and Sternberg PW (2002). Tissue-specific regulation of the LIM homeobox gene lin-11 during development of the Caenorhabditis elegans egg-laying system. Dev Biol 247:102-15 (dx.doi.org/10.1006/dbio.2002.0688).

  • Last modified: 2022/01/07 20:46